A Spectral-Element Method for Transmission Eigenvalue Problems

نویسندگان

  • Jing An
  • Jie Shen
چکیده

We develop an efficient spectral-element method for computing the transmission eigenvalues in two-dimensional radially stratified media. Our method is based on a dimension reduction approach which reduces the problem to a sequence of one-dimensional eigenvalue problems that can be efficiently solved by a spectral-element method. We provide an error analysis which shows that the convergence rate of the eigenvalues is twice that of the eigenfunctions in energy norm. We present ample numerical results to show that the method convergences exponentially fast for piecewise stratified media, and is very effective, particularly for computing the few smallest eigenvalues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)

A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...

متن کامل

Vibration of Timoshenko Beam-Soil Foundation Interaction by Using the Spectral Element Method

This article presents an analysis of free vibration of elastically supported Timoshenko beams by using the spectral element method. The governing partial differential equation is elaborated to formulate the spectral stiffness matrix. Effectively, the non classical end boundary conditions of the beam are the primordial task to calibrate the phenomenon of the Timoshenko beam-soil foundation inter...

متن کامل

Recursive integral method for transmission eigenvalues

Recently, a new eigenvalue problem, called the transmission eigenvalue problem, has attracted many researchers. The problem arose in inverse scattering theory for inhomogeneous media and has important applications in a variety of inverse problems for target identification and nondestructive testing. The problem is numerically challenging because it is non-selfadjoint and nonlinear. In this pape...

متن کامل

Spectral approximation to a transmission eigenvalue problem and its applications to an inverse problem

We first develop an efficient spectral-Galerkin method and an rigorous error analysis for the generalized eigenvalue problems associated to a transmission eigenvalue problem. Then, we present an iterative scheme, based on computation of the first transmission eigenvalue, to estimate the index of refraction of an inhomogeneous medium. We present ample numerical results to demonstrate the effecti...

متن کامل

Super-geometric Convergence of a Spectral Element Method for Eigenvalue Problems with Jump Coefficients

We propose and analyze a C spectral element method for a model eigenvalue problem with discontinuous coefficients in the one dimensional setting. A super-geometric rate of convergence is proved for the piecewise constant coefficients case and verified by numerical tests. Furthermore, the asymptotical equivalence between a Gauss-Lobatto collocation method and a spectral Galerkin method is establ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2013